FINDZEROEXTREMA1D_BASE - Base function for FINDZEROEXTREMA1D.

Contents

Syntax

[Max, Min, Zero] = FINDZEROEXTREMA1D_BASE(X, x);
[Max, Min, Zero] = FINDZEROEXTREMA1D_BASE(X, x, delta);
[Max, Min, Zero] = FINDZEROEXTREMA1D_BASE(X, x, met_max, met_min, met_zeros);
[Max, Min, Zero] = FINDZEROEXTREMA1D_BASE(X, x, ...
           met_max, met_min, met_zeros, delta);
[Max, Min] = FINDZEROEXTREMA1D_BASE(X, x, met_max, met_min, [], delta);
Max = FINDZEROEXTREMA1D_BASE(X, x, met_max, [], [], delta);
Min = FINDZEROEXTREMA1D_BASE(X, x, [], met_min, [], delta;
Zero = FINDZEROEXTREMA1D_BASE(X, x, [], [], met_zeros, delta);

Remarks

See also

Ressembles: FINDZEROEXTREMA1D. Requires: PEAKFINDER, PEAKDET, FINDEXTREMA, EXTREMA, CROSSING, FIND.

Function implementation

function varargout = ...
    findzeroextrema1D_base(X, x, met_max, met_min, met_zeros, delta )

check/set internal parameters

if nb_dims(X)>1
    error('findzeroextrema1D_base:inputerror', ...
        '1D signal required in input');
elseif length(X)<3
    for i=1:nargout,  varargout{i} = [0 0];  end
    return
end

% special case
if nargin==3 && isnumeric(met_max)
    delta = met_max;
    met_max = 'peakfinder';

elseif nargin<6,
    delta = (max(X)-min(X))/4; % see PEAKFINDER
end

% default values for default approach
if nargin<5,  met_zeros = 'crossing'; % by default, we compute it
    if nargin<4,  met_min = 'peakfinder';
        if nargin<3,  met_max = 'peakfinder';
            if nargin<2,  x = []; end
        end
    end
end

if isempty(x),  x = (1:length(X))';  end

if size(X,2)>1,  X = transpose(X);  end
if size(x,2)>1,  x = transpose(x);  end

interpol = false;

% default values when empty options are passed
if length(delta)<3,  valabs = Inf;
    if length(delta)<2,  mindelta = 0;
        if isempty(delta),  delta = 0;  end
    else
        mindelta = delta(2);
    end
else
    valabs = delta(3);
    mindelta = delta(2);
end
delta = delta(1);

main computation starts here

narg =0;

if any(strcmpi('morph',{met_max,met_min,met_zeros}))
    d = [X(2:end-1) X(3:end) X(1:end-2)];
    I = find(max(abs(diff([d d(:,1)],1,2)),[],2)<delta);
end

if ~isempty(met_max)
    % no max computation takes place only when met_max is passed as an empty
    % variable
    narg = narg+1;
    switch met_max

         case 'ecke'

ECKE - Iterative filtering.

            S = X;
            for j = 1:2
                A = diff([X;X(1)]);
                B = flipud(diff(flipud([X(end);X])));
                % min = find(~(((A<0)&(B<=0))|((A<=0)&(B<0))));
                S(~(((A<0)&(B<=0)) | ((A<=0)&(B<0)))) = 0;
                % figure, plot(X, 'x-')
            end
            Max = find(S);
        case {'local3','morph'}

'local3' - Fast naive method for finding extrema in local (3,1) neighbourhoods. since local maximum and minimum points of a signal have zero derivative, their locations can be estimated from the zero- crossings of diff(X), provided the signal is sampled with sufficiently fine resolution;

            % for a coarsely sampled signal, a better estimate is
            A = diff(X(1:end-1)); A(abs(A)<eps) = 0;
            B = diff(X(2:end));  B(abs(B)<eps) = 0;
            % Max = find(sign(A)-sign(B)>0 & abs(A)>delta & abs(B)>delta) + 1;
            Max = find(sign(A)-sign(B)>0 & ...
                min(abs([A B]),[],2)>=delta) + 1;
        case 'local5'

LOCAL5 - Method for finding extrema in local (5x1) neighbourhoods. typically, each signal value is compared to its 4 neighbours (2 left, 2 right) to check if it is a local extremum. examples of accepted configurations ('o' represents the tested value, the '_' represents a locally constant signal, while '/' represents a locally increasing signal and '\' represents a locally decreasing signal:

    o       /o\   _/o\      o__    o_     o
  _/ \_    /   \      \    /      /  \   / \_
                          /      /      /
examples of rejected configurations
   _o_       _     /
  /   \    o/    o/   /\o/\  /\o       o      o_/
         _/     /               \/    / \/   /
               /                     /      /
            A = diff(X(2:end-2));  A(abs(A)<eps) = 0;
            B = diff(X(3:end-1));  B(abs(B)<eps) = 0;
            C = diff(X(1:end-3));  C(abs(C)<eps) = 0;
            D = diff(X(4:end));  D(abs(D)<eps) = 0;
            Max = find(sign(A)-sign(B)>0 & sign(C)-sign(D)>0 & ...
                min(abs([A B]),[],2)>=delta) + 2;
        case 'peakfinder'

PEAKFINDER - Noise tolerant fast peak finding algorithm. PEAKFINDER quickly finds local peaks or valleys (local extrema) in a noisy vector using a user-defined magnitude threshold to determine if each peak is significantly larger (or smaller) than the data around it. The problem with the strictly derivative based peak finding algorithms is that if the signal is noisy many spurious peaks are found. However, more complex methods often take much longer for large data sets, require a large amount of user interaction, and still give highly variable results. This function attempts to use the alternating nature of the derivatives along with the user defined threshold to identify local maxima or minima in a vector quickly and robustly.

            [Max, vMax] = peakfinder(X, delta, 1);
            % [peakLoc, peakMag] = peakfinder(x0,thresh,extrema) returns the
            % indices of the local maxima as well as the magnitudes of those
            % maxima.
            %   INPUTS:
            %       x0 - A real vector from the maxima will be found (required)
            %       thresh - The amount above surrounding data for a peak to
            %           be identified (default = (max(x0)-min(x0))/4). Larger
            %           values mean the algorithm is more selective in finding
            %           peaks.
            %       extrema - 1 if maxima are desired, -1 if minima are desired
            %           (default = maxima, 1)
            %   OUTPUTS:
            %       peakLoc - The indicies of the identified peaks in x0
            %       peakMag - The magnitude of the identified peaks
        case 'peakdet'

PEAKDET - Detect peaks in a vector. Using the well-known zero-derivate method. Due to the noise, which is always there in real-life signals, accidental zero- crossings of the first derivate occur, yielding false detections. The typical solution is to smooth the curve with some low-pass filter, usually killing the original signal at the same time. The result is usually that the algorithm goes horribly wrong where it's so obvious to the eye. The trick here is to realize, that a peak is the highest point between "valleys". What makes a peak is the fact that there are lower points around it. This strategy is adopted by PEAKDET: look for the highest point, around which there are points lower by X on both sides.

            [Max, Min] = peakdet(X, delta); % Max and Min are already complete
           % [maxtab, mintab] = peakdet(v, delta, x) finds the local maxima
            % and minima ("peaks").
            %   INPUTS:
            %       V - input vector.
            %       delta - a point is considered a maximum peak if it has
            %           the maximal value, and was preceded (to the left) by
            %           a value lower by delta: we require a difference of
            %           at least delta between a peak and its surrounding in
            %           order to declare it as a peak.
            %       x - the indices in MAXTAB and MINTAB (see below) will be
            %           replaced with the corresponding x-values.
            %   OUTPUTS:
            %       MAXTAB, MINTAB - consist of two columns; column 1 contains
            %           indices in V, and column 2 the found values.
        case 'fpeak'

FPEAK - Find peak value of data. FPEAK reports the minimum data points and requires more inputs than the PEAKFINDER method for instance.

            varargout{1} = fpeak(x, X, delta);
            % peak = fpeak(x, y, s, Range)
            %   INPUTS:
            %       x, y - input signal coordinates and values
            %       s - sensitivity of the function.
            %       Range - peak value's range
            varargout{2} = [];
        case 'findextrema'

FINDEXTREMA - find indices of local extrema and zero-crossings.

            [Max, Min, Zero] = findextrema(X);
             % [IMAX,IMIN,ICRS] = FINDEXTREMA(X) returns the indices of local
            % maxima in IMAX, minima in IMIN and zero-crossing in ICRS for
            % input vector X
        case 'extrema'

EXTREMA - Gets the global extrema points from a time series. EXTREMA reports many maxima peaks

            [vMax,Max,vMin,Min] = extrema(X);
            % [XMAX,IMAX,XMIN,IMIN] = EXTREMA(X) returns the global minima
            % and maxima points.
            %   INPUTS:
            %       X - input vector, possibly containing NaN values (ignored)
            %   OUTPUTS:
            %       XMAX - maxima points in descending order
            %       IMAX - indexes of the XMAX
            %       XMIN - minima points in descending order
            %       IMIN - indexes of the XMIN
    end

    if strcmpi(met_max,'morph')
        S = X;
        ero = min(d,[],2); ero(ero<0) = 0;
        S(I+1) = ero(I);
        A = diff(S(1:end-1)); B = diff(S(2:end));
        M = find(sign(A)-sign(B)>0) + 1;
        Max = Max(ismember(Max,M));
    end

    if ~isnan(mindelta) && mindelta>0
        if ~strcmpi(met_max,'local3')
            A = diff(X(1:end-1)); B = diff(X(2:end));
        end
        md = find(max(abs([A B]),[],2)>mindelta)+1;
        Max(~ismember(Max,md)) = [];
        if exist('vMax','var') && ~isempty(vMax),
            vMax(ismember(Max,md)) = [];
        end
    end

    if ~isnan(valabs) && valabs<Inf && valabs>0,
        mv = find(abs(X)<=valabs);
        Max(ismember(Max,mv)) = [];
        if exist('vMax','var') && ~isempty(vMax),
            vMax(ismember(Max,mv)) = [];
        end
    end

    if ~strcmpi(met_max,'fpeak')
        % retrieve the coordinates of the extrema in the original system and
        % determine the extrema values, if not done already
        if size(Max,2)<2,
            if ~exist('vMax','var') || isempty(vMax),  vMax = X(Max);  end
            varargout{narg} = [x(Max) vMax];
        else
            varargout{narg} = Max;
            varargout{narg}(:,1) = x(Max(:,1));
        end
    end

    if isempty(varargout{narg}), varargout{narg} = [0 0];  end
end

if ~isempty(met_min)
    % no min computation takes place only when met_min is passed as an empty
    % variable
    narg = narg+1;
    switch met_min

        case 'ecke' % nothing output
            S = X;
            for j = 1:2
                A = diff([X;X(1)]);
                B = flipud(diff(flipud([X(end);X])));
                S(~(((A>0)&(B>=0)) | ((A>=0)&(B>0)))) = 0;
            end
            Min = find(S);

        case {'local3','morph'}
            if isempty(met_max) || ~strcmpi(met_max,'local3')
                A = diff(X(1:end-1));  A(abs(A)<eps) = 0;
                B = diff(X(2:end));  B(abs(B)<eps) = 0;
                % else: A and B have been already previously computed
            end
            % Min = find(sign(A)-sign(B)<0 & abs(A)>delta & abs(B)>delta) + 1;
            Min = find(sign(A)-sign(B)<0 & ...
                min(abs([A B]),[],2)>=delta & ...
                max(abs([A B]),[],2)>mindelta) + 1;

        case 'local5'
            if isempty(met_max) || ~strcmpi(met_max,'local5')
                A = diff(X(2:end-2));  A(abs(A)<eps) = 0;
                B = diff(X(3:end-1));  B(abs(B)<eps) = 0;
                C = diff(X(1:end-3));  C(abs(C)<eps) = 0;
                D = diff(X(4:end));  D(abs(D)<eps) = 0;
            end
            Min = find(sign(A)-sign(B)<0 & sign(C)-sign(D)<0 & ...
                min(abs([A B]),[],2)>=delta) + 2;

        case 'peakfinder'
            [Min, vMin] = peakfinder(X,delta,-1);

        case 'peakdet'
            if isempty(met_max) || ~strcmpi(met_max,'peakdet')
                [~, Min] = peakdet(X, delta);
                % else: we already computed a Min
            end

        case 'fpeak'
            if isempty(met_max) || ~strcmpi(met_max,'fpeak')
                varargout{narg} = fpeak(x, X, delta);
            end

        case 'findextrema'
            if isempty(met_max) || ~strcmpi(met_max,'findextrema')
                [~, Min, Zero] = findextrema(X);
                % else: we already computed a Min
            end

        case 'extrema'
            if isempty(met_max) || ~strcmpi(met_max,'extrema')
                [~, ~, vMin, Min] = extrema(X);
                % else: we already computed Min, vMin
            end

    end

    if strcmpi(met_max,'morph')
        S = -X; d = -d;
        ero = min(d,[],2); ero(ero<0) = 0;
        S(I+1) = ero(I);
        A = diff(S(1:end-1)); B = diff(S(2:end));
        m = find(sign(A)-sign(B)>0) + 1;
        Min = Min(ismember(Min,m));
    end

    if ~isnan(mindelta) && mindelta>0
        if ~strcmpi(met_min,'local3')
            A = diff(X(1:end-1)); B = diff(X(2:end));
        end
        md = find(max(abs([A B]),[],2)>mindelta)+1;
        Min(~ismember(Max,md)) = [];
        if exist('vMin','var') && ~isempty(vMin),
            vMin(ismember(Min,md)) = [];
        end
    end

    if ~isnan(valabs) && valabs<Inf && valabs>0,
        if ~exist('mv','var'),  mv = find(abs(X)<=valabs);  end
        Min(ismember(Min,mv)) = [];
        if exist('vMin','var') && ~isempty(vMin),
            vMin(ismember(Min,mv)) = [];
        end
    end

    if ~strcmpi(met_min,'fpeak')
        if ~isempty(Min)
            if size(Min,2)<2,
                if ~exist('vMin','var') || isempty(vMin),  vMin = X(Min);  end
                varargout{narg} = [x(Min) vMin];
            else
                varargout{narg} = Min;
                varargout{narg}(:,1) = x(Min(:,1));
            end
        else
            varargout{narg} = [];
        end
    end
    if isempty(varargout{narg}), varargout{narg} = [0 0];  end
end

if strcmpi(met_zeros,'morph')
    if any(strcmpi('morph',{met_max,met_min}))
        X = S;
    else
        ero = min(d,[],2); ero(ero<0) = 0;
        X(I+1) = ero(I);
    end
end

if ~isempty(met_zeros)
    narg = narg+1;
    switch met_zeros

        case 'naive'

Naive method to obtain the indices where signal x crosses zero

            i0 =  find(diff(sign(X)));
            % the kth zero-crossing lies between x(i(k))  and x(i(k)+1)
            % linear interpolation can be used for subsample estimates of
            % zero-crossings locations
            if interpol     % linear interpolation
                varargout{narg} = i0 - X(i0)./(X(i0+1) - X(i0));       %#ok
            else
                varargout{narg} = i0;
            end
        case {'local3','morph'}

'local3' - Extraction of zero crossing by comparing a value with its direct neighbours.

            A = diff(X(1:end-1));  B = diff(X(2:end));
            % same thing, but then B=-B:
            %  A = diff(X);  A = A(1:end-1);
            %  B = flipud(diff(flipud(X)));  B = B(2:end);
            % thus, we then have to check A.*B<=0 in the following
            varargout{narg} = ...
                find(A.*B>=0 & X(1:end-2).*X(3:end)<=0 & ... % zero-crossing
                min(abs([A B]),[],2)>delta) ...              % non constant
                + 1;
            % & abs(X(2:end-1))<= min([abs(X(1:end-2)) abs(X(3:end))],[],2)
        case 'crossing'

CROSSING - Find the crossings of a given level of a signal

            if interpol
                [ind,varargout{narg}] = crossing(X);                   %#ok
            else
                varargout{narg} = crossing(X);
            end
            % [ind,t0] = CROSSING(S,t,level,par)
            %   INPUTS:
            %       S - input signal.
            %       t - interpolating time (possibly [] for no interpolation).
            %       level - crossings at this level will be returned instead
            %           of the zero crossings.
            %       par - optional string {'none'|'linear'}: with interpolation
            %	        turned off (par = 'none') this function always returns
            %	        the value left of the zero (the data point that is
            %           nearest to the zero AND smaller than the zero
            %           crossing).
            %   OUTPUTS:
            %       ind - index vector so that the signal S crosses zero at
            %           ind or between ind and ind+1
            %       t0 - time vector t0 of the zero crossings of the signal
            %           S; the crossing times are linearly interpolated
            %           between the given times t
        case 'findextrema'

FINDEXTREMA - find indices of local extrema and zero-crossings.

            if any(strcmpi({met_max; met_min},{'findextrema';'findextrema'}))
                % Zero has been computed already
                varargout{narg} = Zero;
            else
                [~, ~, varargout{narg}] = findextrema(X); % see above
            end
    end

    if ~isnan(valabs) && valabs~=Inf,
        if ~exist('mv','var'),   mv = find(abs(X)<=valabs);  end
        varargout{narg}(~ismember(varargout{narg},mv)) = [];
    end

    if ~isnan(mindelta) && mindelta>0
        if ~strcmpi(met_zeros,{'local3','morph'})
            A = diff(X(1:end-1)); B = diff(X(2:end));
        end
        md = find(max(abs([A B]),[],2)>=mindelta)+1;
        varargout{narg}(~ismember(varargout{narg},md)) = [];
    end

    % retrieve the coordinates in the original system
    varargout{narg} = x(varargout{narg});
    if isempty(varargout{narg}), varargout{narg} = 0;  end
end

if narg<nargout  % too many variables have been required in output
    varargout(narg+1:nargout) = cell(nargout-narg,1);
    if narg==0
        error('findzeroextrema1D_base:errorinput', ...
            ['at least one non empty string must be entered as a method - ' ...
            'see variables met_min, met_max and met_zeros']);
    end
end
end % end of findzeroextrema1D_base